Thursday, March 29, 2007

Still time to enter flag contest!

If you are 6-12 years old.

The new roughnecks

Still from Texas, but working on the Moon and LEO.

Auroras on Jupiter

If you can see in the X-Ray band that is!

Planets around Double Stars

This contradicts what many scientists have been saying for the last few years...
Whitney Clavin (818) 354-4673
Jet Propulsion Laboratory, Pasadena, Calif.

News Release: 2007-036 March 29, 2007

NASA Telescope Finds Planets Thrive Around Stellar Twins

The double sunset that Luke Skywalker gazed upon in the film "Star Wars" might not be a fantasy.

Astronomers using NASA's Spitzer Space Telescope have observed that planetary systems – dusty disks of asteroids, comets and possibly planets – are at least as abundant in twin-star systems as they are in those, like our own, with only one star. Since more than half of all stars are twins, or binaries, the finding suggests the universe is packed with planets that have two suns. Sunsets on some of those worlds would resemble the ones on Luke Skywalker's planet, Tatooine, where two fiery balls dip below the horizon one by one.

"There appears to be no bias against having planetary system formation in binary systems," said David Trilling of the University of Arizona, Tucson, lead author of a new paper about the research appearing in the April 1 issue of the Astrophysical Journal. "There could be countless planets out there with two or more suns."

Previously, astronomers knew that planets could form in exceptionally wide binary systems, in which stars are 1,000 times farther apart than the distance between Earth and the sun, or 1,000 astronomical units. Of the approximately 200 planets discovered so far outside our solar system, about 50 orbit one member of a wide stellar duo.

The new Spitzer study focuses on binary stars that are a bit more snug, with separation distances between zero and 500 astronomical units. Until now, not much was known about whether the close proximity of stars like these might affect the growth of planets. Standard planet-hunting techniques generally don't work well with these stars, but, in 2005, a NASA-funded astronomer found evidence for a planet candidate in one such multiple-star system (

Trilling and his colleagues used Spitzer's infrared, heat-seeking eyes to look not for planets, but for dusty disks in double-star systems. These so-called debris disks are made up of asteroid-like bits of leftover rock that never made it into rocky planets. Their presence indicates that the process of building planets has occurred around a star, or stars, possibly resulting in intact, mature planets.

In the most comprehensive survey of its kind, the team looked for disks in 69 binary systems between about 50 and 200 light-years away from Earth. All of the stars are somewhat younger and more massive than our middle-aged sun. The data show that about 40 percent of the systems had disks, which is a bit higher than the frequency for a comparable sample of single stars. This means that planetary systems are at least as common around binary stars as they are around single stars.

In addition, the astronomers were shocked to find that disks were even more frequent (about 60 percent) around the tightest binaries in the study. These coziest of stellar companions are between zero and three astronomical units apart. Spitzer detected disks orbiting both members of the star pairs, rather than just one. Extra-tight star systems like these are where planets, if they are present, would experience Tatooine-like sunsets.

"We were very surprised to find that the tight group had more disks," said Trilling. "This could mean that planet formation favors tight binaries over single stars, but it could also mean tight binaries are just dustier. Future observations should provide a better answer."

The Spitzer data also reveal that not all binary systems are friendly places for planets to form. The telescope detected far fewer disks altogether in intermediately spaced binary systems, between three to 50 astronomical units apart. This implies that stars may have to be either very close to each other, or fairly far apart, for planets to arise.

"For a planet in a binary system, location is everything," said co-author Karl Stapelfeldt of NASA's Jet Propulsion Laboratory in Pasadena, Calif.

"Binary systems were largely ignored before," added Trilling. "They are more difficult to study, but they might be the most common sites for planet formation in our galaxy."

Other authors on the paper include: John Stansberry, George Rieke and Kate Su of the University of Arizona; Richard Gray of the Appalachian State University, Boone, N.C.; Chris Corbally of the Vatican Observatory, Tucson; Geoff Bryden, Andy Boden and Charles Beichman of JPL; and Christine Chen of the National Optical Astronomical Observatory, Tucson.

JPL manages Spitzer for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology, also in Pasadena. The multiband imaging photometer for Spitzer was built by Ball Aerospace Corporation, Boulder, Colo.; the University of Arizona; and Boeing North American, Canoga Park, Calif. Co-author Rieke is the principal investigator.

For more information and graphics, visit and . More information about extrasolar planets and NASA's planet-finding program is at .

Inflatable Moon Base

Sounds good to me.

Planning for Mars on the ISS

A bit of a stretch I think. They ought to be working on testing artifical gravity up there. That is the best way to get to Mars and have enough muscle strength to operate at a high level right away which will be required.

Tuesday, March 27, 2007

Update on the Pioneer Anomaly
The Pluto probe will eventually contribute to understanding this too.

Saturn Geometry

PASADENA, CALIF. 91109 TELEPHONE (818) 354-5011,

Carolina Martinez/Jane Platt 818-354-9382/818-354-0880
Jet Propulsion Laboratory, Pasadena, Calif.

Image Advisory: 2007-034 March 27, 2007

Cassini Images Bizarre Hexagon on Saturn

Pasadena, Calif. -- An odd, six-sided, honeycomb-shaped feature circling the entire north pole of Saturn has captured the interest of scientists with NASA's Cassini mission.

NASA's Voyager 1 and 2 spacecraft imaged the feature over two decades ago. The fact that it has appeared in Cassini images indicates that it is a long-lived feature. A second hexagon, significantly darker than the brighter historical feature, is also visible in the Cassini pictures. The spacecraft's visual and infrared mapping spectrometer is the first instrument to capture the entire hexagon feature in one image.

"This is a very strange feature, lying in a precise geometric fashion with six nearly equally straight sides," said Kevin Baines, atmospheric expert and member of Cassini's visual and infrared mapping spectrometer team at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "We've never seen anything like this on any other planet. Indeed, Saturn's thick atmosphere where circularly-shaped waves and convective cells dominate is perhaps the last place you'd expect to see such a six-sided geometric figure, yet there it is."

The hexagon is similar to Earth's polar vortex, which has winds blowing in a circular pattern around the polar region. On Saturn, the vortex has a hexagonal rather than circular shape. The hexagon is nearly 25,000 kilometers (15,000 miles) across. Nearly four Earths could fit inside it.

The new images taken in thermal-infrared light show the hexagon extends much deeper down into the atmosphere than previously expected, some 100 kilometers (60 miles)below the cloud tops. A system of clouds lies within the hexagon. The clouds appear to be whipping around the hexagon like cars on a racetrack.

"It's amazing to see such striking differences on opposite ends of Saturn's poles," said Bob Brown, team leader of the Cassini visual and infrared mapping spectrometer, University of Arizona, Tucson. "At the south pole we have what appears to be a hurricane with a giant eye, and at the north pole of Saturn we have this geometric feature, which is completely different."

The Saturn north pole hexagon has not been visible to Cassini's visual cameras, because it's winter in that area, so the hexagon is under the cover of the long polar night, which lasts about 15 years. The infrared mapping spectrometer can image Saturn in both daytime and nighttime conditions and see deep inside. It imaged the feature with thermal wavelengths near 5 microns (seven times the wavelength visible to the human eye) during a 12-day period beginning on Oct. 30, 2006. As winter wanes over the next two years, the feature may become visible to the visual cameras.

Based on the new images and more information on the depth of the feature, scientists think it is not linked to Saturn's radio emissions or to auroral activity, as once contemplated, even though Saturn's northern aurora lies nearly overhead.

The hexagon appears to have remained fixed with Saturn's rotation rate and axis since first glimpsed by Voyager 26 years ago. The actual rotation rate of Saturn is still uncertain.

"Once we understand its dynamical nature, this long-lived, deep-seated polar hexagon may give us a clue to the true rotation rate of the deep atmosphere and perhaps the interior," added Baines.

The hexagon images and movie, including the north polar auroras are available at: and and .

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA's Science Mission Directorate, Washington. The Cassini orbiter was designed, developed and assembled at JPL. The Visual and Infrared Mapping Spectrometer team is based at the University of Arizona.

New, New, New

Orion: New Spacecraft
Ares: New Rocket

What else do we need? New space suits!

Update on Bigelow Inflatable Spacecraft

Genesis 2 will have reaction wheels for attitude control. You can even see your own item float around inside for a fee.

Monday, March 26, 2007

Where are Titan's Craters?

My guess is that the heat generated by the impact melts the surface and the liquid fills in the crater and re-freezes.

Kansas Cosmosphere

I hope to visit there some day:

Visting an asteroid

I think that is a great demonstartion mission for Orion. Of course pick one that is easy to get to.

Report and analysis of recent SpaceX launch

Here is a nice picture of the launch:

Good overview of planetary defense

Why go back to the Moon?

Once again another commentor hits the nail on the head: the future of human civilization.

Thursday, March 15, 2007

Mars Rover Update

Spirit is studying "Home Plate", Opportunity is still circumnavigating Victoria Crater:

No new pictures :(

Pluto Passing in Front of Star

Occulation on Sunday:

Water at Mars' South Pole

Guy Webster 818-354-6278
Jet Propulsion Laboratory, Pasadena, Calif.

Dwayne Brown/Tabatha Thompson 202-358-1726/3895
NASA Headquarters, Washington

ESA Media Relations Office 33-1-53-69-7155
European Space Agency, Paris

News Release: 2007-030 March 15, 2007

Mars' South Pole Ice Deep and Wide

Pasadena, Calif. -- New measurements of Mars' south polar region indicate extensive frozen water. The polar region contains enough frozen water to cover the whole planet in a liquid layer approximately 11 meters (36 feet) deep. A joint NASA-Italian Space Agency instrument on the European Space Agency's Mars Express spacecraft provided these data.

This new estimate comes from mapping the thickness of the ice. The Mars Express orbiter's radar instrument has made more than 300 virtual slices through layered deposits covering the pole to map the ice. The radar sees through icy layers to the lower boundary, which is as deep as 3.7 kilometers (2.3 miles) below the surface.

"The south polar layered deposits of Mars cover an area bigger than Texas. The amount of water they contain has been estimated before, but never with the level of confidence this radar makes possible," said Jeffrey Plaut of NASA's Jet Propulsion Laboratory, Pasadena Calif. Plaut is co-principal investigator for the radar and lead author of a new report on these findings published in the March 15 online edition of the journal Science.

The instrument, named the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS), also is mapping the thickness of similar layered deposits at the north pole of Mars.

"Our radar is doing its job extremely well," said Giovanni Picardi, a professor at the University of Rome "La Sapienza," and principal investigator for the instrument.

"MARSIS is showing itself to be a very powerful tool to probe underneath the Martian surface, and it's showing how our team's goals, such as probing the polar layered deposits, are being successfully achieved," Picardi said. "Not only is MARSIS providing us with the first-ever views of Mars subsurface at those depths, but the details we are seeing are truly amazing. We expect even greater results when we have concluded an ongoing, sophisticated fine-tuning of our data processing methods. These should enable us to understand even better the surface and subsurface composition."

Polar layered deposits hold most of the known water on modern Mars, though other areas of the planet appear to have been very wet at times in the past. Understanding the history and fate of water on Mars is a key to studying whether Mars has ever supported life, since all known life depends on liquid water.

The polar layered deposits extend beyond and beneath a polar cap of bright-white frozen carbon dioxide and water at Mars' south pole. Dust darkens many of the layers. However, the strength of the echo that the radar receives from the rocky surface underneath the layered deposits suggests the composition of the layered deposits is at least 90 percent frozen water. One area with an especially bright reflection from the base of the deposits puzzles researchers. It resembles what a thin layer of liquid water might look like to the radar instrument, but the conditions are so cold that the presence of melted water is deemed highly unlikely.

Detecting the shape of the ground surface beneath the ice deposits provides information about even deeper structures of Mars. "We didn't really know where the bottom of the deposit was," Plaut said. "Now we can see that the crust has not been depressed by the weight of the ice as it would be on the Earth. The crust and upper mantle of Mars are stiffer than the Earth's, probably because the interior of Mars is so much colder."

The MARSIS instrument on the European Space Agency's Mars Express orbiter was developed jointly by the Italian Space Agency and NASA, under the scientific supervision of the University of Rome "La Sapienza," in partnership with JPL and the University of Iowa, Iowa City. JPL manages NASA's roles in Mars Express for the NASA Science Mission Directorate, Washington.

For information about NASA and agency programs, visit:

Wednesday, March 14, 2007

Debris beyond Neptune

NASA Playing Games

With marbles!

Sulfur on Mars

Guy Webster 818-354-6278
Jet Propulsion Laboratory, Pasadena, Calif.

News Release: 2007-029 March 14, 2007

NASA Mars Rover Churns Up Questions With Sulfur-Rich Soil

Some bright Martian soil containing lots of sulfur and a trace of water intrigues researchers who are studying information provided by NASA's Spirit rover.

"This material could have been left behind by water that dissolved these minerals underground, then came to the surface and evaporated, or it could be a volcanic deposit formed around ancient gas vents," said Dr. Ray Arvidson of Washington University, St. Louis. He is the deputy principal investigator for NASA's twin Mars rovers, Spirit and Opportunity.

Determining which of those two hypotheses is correct would strengthen understanding of the environmental history of the Columbia Hills region that Spirit has been exploring since a few months after landing on Mars in January 2004. However, investigating the bright soil presents a challenge for the rover team, because the loose material could entrap the rover.

The bright white and yellow material was hidden under a layer of normal-looking soil until Spirit's wheels churned it up while the rover was struggling to cross a patch of unexpectedly soft soil nearly a year ago. The right front wheel had stopped working a week earlier. Controllers at NASA's Jet Propulsion Laboratory, Pasadena, Calif., were trying to maneuver the rover backwards, dragging that wheel, to the north slope of a hill in order to spend the southern-hemisphere winter with solar panels tilted toward the sun.

Due to the difficulty crossing that patch, informally named "Tyrone," the team chose to drive Spirit to a smaller but more accessible slope for the winter. Spirit stayed put in its winter haven for nearly seven months. Tyrone was one of several targets Spirit examined from a distance during that period, using an infrared spectrometer to check their composition. The instrument detected small amounts of water bound to minerals in the soil.

The rover resumed driving in late 2006 when the Martian season brought sufficient daily sunshine to the solar panels. Some of the bright soil from Tyrone was dragged to the winter site by the right front wheel, and Spirit spent some time measuring the composition and mineralogy of these materials. The material is sulfur-rich and consists of sulfate salts associated with iron, and likely calcium. "These salts could have been concentrated by hydrothermal liquid or vapor moving through the local rocks," said rover science team member Dr. Albert Yen, a geochemist at JPL. Two other patches of bright soil uncovered by Spirit before Tyrone were also sulfur-rich, but each had similarities to local rock compositions that were different at the three sites, suggesting localized origins.

Researchers will watch for more patches of bright soil. "If we find them along fractures, that would suggest they were deposited at ancient gas vents," Arvidson said. "If they are at the saddles between hills, that would suggest the deposits formed where groundwater came to the surface."

Scientists are describing recent findings by Spirit and Opportunity at the Lunar and Planetary Science Conference this week in League City, Texas.

Spirit has driven away from the Tyrone area for a clockwise circuit around a plateau called "Home Plate." Researchers want to learn more about Home Plate, which Spirit visited briefly in early 2006. They are checking a hypothesis that explosive volcanism, driven by the interaction of magma with water, formed Home Plate and similar features.

Halfway around Mars, Opportunity is exploring clockwise around "Victoria Crater," a bowl about 800 meters (half a mile) across. Cliff-like promontories alternate with more gradually sloped alcoves around the scalloped rim. The impact that dug the crater exposed layers that had been buried.

"The images are breathtaking," said Dr. Steve Squyres of Cornell University, principal investigator for the rovers. "Every promontory we've seen has the kinds of layering expected for ancient wind-blown sand deposits."

The layers consist of sulfate-rich sandstone similar to other bedrock Opportunity has been finding in Mars' Meridiani region for more than three years. The minerals come from a wet period in the region's ancient past. While exploring Victoria's rim with Opportunity, researchers have been on the lookout for rocks that might have been tossed out from layers deeper and older than the sulfates.

"We found one group of cobbles that were clearly more resistant to erosion than the sulfate blocks thrown out onto the rim," Squyres said. "We checked the composition of one that we called Santa Catarina. Our suspicion now is that Santa Catarina is a piece of a meteorite." That would be the fifth meteorite found by the rovers.

More than three years into what was planned as a three-month mission on Mars, both Spirit and Opportunity remain in good health, though with signs of aging. "The team has learned how to drive Spirit very well with just five wheels," said JPL's Dr. John Callas, rover project manager. "We could accomplish longer drives if there were more energy, but Spirit's solar panels have gotten really dusty. We would welcome another wind-related cleaning event." It's about the same time of year on Mars now as it was when winds blew dust off Spirit and its solar panels in 2005, increasing energy output.

JPL, a division of the California Institute of Technology, Pasadena, manages the Mars Exploration Rover project for NASA's Science Mission Directorate. For images and information about the rovers, visit .

Vision for Space Exploration Update

We need to retire the shuttle and get on with Orion and Ares. Who is elected President in 2008 makes a big difference on the future of manned space flight.

Monday, March 12, 2007

To find life, instead of following the water...

Follow the energy:

Can you count stars?

Then you are wanted!

Stereo Eclipse


More Global Warming...

On Enceladus

This time caused by radioactivity...

PASADENA, CALIF. 91109 TELEPHONE (818) 354-5011,

Contact:Carolina Martinez 818-354-9382
Jet Propulsion Laboratory, Pasadena, Calif.

NEWS RELEASE: 2007-025 March 12, 2007

A Hot Start Might Explain Geysers on Enceladus

A hot start billions of years ago might have set into motion the forces that power geysers on Saturn's moon Enceladus.

"Deep inside Enceladus, our model indicates we've got an organic brew, a heat source and liquid water, all key ingredients for life," said Dr. Dennis Matson, Cassini project scientist at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "And while no one is claiming that we have found life by any means, we probably have evidence for a place that might be hospitable to life."

Since NASA's Voyager spacecraft first returned images of the moon's snowy white surface, scientists have suspected Enceladus had to have something unusual happening within that shell. Cameras on NASA's Cassini orbiter seemed to confirm that suspicion in 2005 when they spotted geysers on Enceladus ejecting water vapor and ice crystals from its south polar region. The challenge for researchers has been to figure out how this small ice ball could produce the levels of heat needed to fuel such eruptions.

A new model suggests the rapid decay of radioactive elements within Enceladus shortly after it formed may have jump-started the long-term heating of the moon's interior that continues today. The model provides support for another recent, related finding, which indicates that Enceladus' icy plumes contain molecules that require elevated temperatures to form.

"Enceladus is a very small body, and it's made almost entirely of ice and rock. The puzzle is how the moon developed a warm core," said Dr. Julie Castillo, the lead scientist developing the new model at JPL. "The only way to achieve such high temperatures at Enceladus is through the very rapid decay of some radioactive species."

The hot start model suggests Enceladus began as a mixed-up ball of ice and rock that contained rapidly decaying radioactive isotopes of aluminum and iron. The decomposition of those isotopes – over a period of about 7 million years – would produce enormous amounts of heat. This would result in the consolidation of rocky material at the core surrounded by a shell of ice. According to the theory, the remaining, more slowly decaying radioactivity in the core could continue to warm and melt the moon's interior for billions of years, along with tidal forces from Saturn's gravitational tug.

Scientists have also found the model helpful in explaining how Enceladus might have produced the chemicals in the plume, as measured by Cassini's ion and neutral mass spectrometer. Matson is lead author of a new study of the plume's composition, which appears in the April issue of the journal Icarus. Although the plume is predominantly made up of water vapor, the spectrometer also detected within the plume minor amounts of gaseous nitrogen, methane, carbon dioxide, propane and acetylene.

Scientists were particularly surprised by the nitrogen because they don't think it could have been part of Enceladus' original makeup. Instead, Matson's team suggests it is the product of the decomposition of ammonia deep within the moon, where the warm core and surrounding liquid water meet.

The thermal decomposition of ammonia would require temperatures as high as 577 degrees Celsius (1070 degrees Fahrenheit), depending on whether catalysts such as clay minerals are present. And while the long-term decay of radioactive species and current tidal forces alone cannot account for such high temperatures, with the help of the hot start model, they can.

The scalding conditions are also favorable for the formation of simple hydrocarbon chains, basic building blocks of life, which Cassini's spectrometer detected in small amounts within Enceladus' plume. The team concludes that so far, all the findings and the hot start model indicate that a warm, organic-rich mixture was produced below the surface of Enceladus and might still be present today, making the moon a promising kitchen for the cooking of primordial soup.

To gather more information about the chemistry within Enceladus, the team plans to directly measure the gas emanating from the plume during a flyby scheduled for March 2008.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA's Science Mission Directorate, Washington. The Cassini orbiter was designed, developed and assembled at JPL.

For images and information about the Cassini mission, visit: and .

Global Warming all of the Solar System

Caused by the Sun...